Third prototype: one voice!
Check this video on vimeo: http://vimeo.com/12988327 :)
This is the third prototype of my DIY synthesizer. I’m using a 82c54 16-bit timer chip for the voice (one chip has three timers, so three voices should be possible). This chip divides a master clock signal (usually in the Mhz range) through a programmable 16-bit value to create a audible frequency.
An Arduino Duemilanove interprets the midi (CNY17) and feeds a divider value via a shift register (74hc595) to the 82c54 voice. The crystal oscillator clock ticks at 8Mhz so for a 440Hz pulse waveform (central A) the division value is 18182. This prototype cannot produce notes below midinote 47 (B) because of it’s maximum divider value (16-bit = 65.536). Future prototypes will use a clock divider (arduino itself?)
Oh, my synth-playing-skills are well below par ;)
Very much inspired by the Roland Jupiter / Juno series.
This is the prototype from the previous post, with the midi in hardware solution from tetracon (arduino forum).
Timothy Twillman has developed a great Arduino midi library. Very easy to implement, exactly what I needed. Check it out.
For each midi note, I pre-calculated the least and the most significant byte. The prototype code (very ugly):
#include "Midi.h" int midi_divides_lsb[] = {66, 182, 65, 33, 183, 116, 192, 11, 222, 186, 44, 195, 33, 222, 160, 16, 221, 186, 94, 135, 240, 93, 150, 99, 144, 239, 80, 136, 111, 221, 176, 195, 248, 47, 75, 49, 200, 247, 168, 196, 55, 239, 216, 226, 252, 23, 37, 25, 228, 124, 212, 226, 156, 247, 236, 113, 126, 12, 19, 140, 114, 190, 106, 113, 206, 124, 118, 184, 63, 6, 9, 70, 185, 95, 53, 56, 103, 190, 59, 220, 159, 131, 133, 163, 221, 47, 154, 28, 179, 95, 29, 238, 208, 193, 194, 210, 238, 24, 77, 142, 218, 47, 143, 247, 104, 225, 97, 233, 119, 12, 167, 71, 237, 152, 71, 252, 180, 112, 49, 244, 188, 134, 83, 36, 246, 204, 164, 126}; int midi_divides_msb[] = {3822, 3607, 3405, 3214, 3033, 2863, 2702, 2551, 2407, 2272, 2145, 2024, 1911, 1803, 1702, 1607, 1516, 1431, 1351, 1275, 1203, 1136, 1072, 1012, 955, 901, 851, 803, 758, 715, 675, 637, 601, 568, 536, 506, 477, 450, 425, 401, 379, 357, 337, 318, 300, 284, 268, 253, 238, 225, 212, 200, 189, 178, 168, 159, 150, 142, 134, 126, 119, 112, 106, 100, 94, 89, 84, 79, 75, 71, 67, 63, 59, 56, 53, 50, 47, 44, 42, 39, 37, 35, 33, 31, 29, 28, 26, 25, 23, 22, 21, 19, 18, 17, 16, 15, 14, 14, 13, 12, 11, 11, 10, 9, 9, 8, 8, 7, 7, 7, 6, 6, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 3, 3, 2, 2, 2, 2}; class MyMidi : public Midi { public: // Need this to compile; it just hands things off to the Midi class. MyMidi(HardwareSerial &s) : Midi(s) {} void handleNoteOn(unsigned int channel, unsigned int note, unsigned int velocity) { digitalWrite(13, HIGH); data_transfer(midi_divides_lsb[note],midi_divides_msb[note]); // Serial.println(note); // Serial.print(midi_divides_lsb[note]); // Serial.print(" - "); // Serial.println(midi_divides_msb[note]); } void handleNoteOff(unsigned int channel, unsigned int note, unsigned int velocity) { digitalWrite(13, LOW); } /* You can define any of these functions and they will be called when the matching message type is received. Otherwise those types of Midi messages are just ignored. For C++ folks: these are all declared virtual in the base class void handleNoteOff(unsigned int channel, unsigned int note, unsigned int velocity); void handleNoteOn(unsigned int channel, unsigned int note, unsigned int velocity); void handleVelocityChange(unsigned int channel, unsigned int note, unsigned int velocity); void handleControlChange(unsigned int channel, unsigned int controller, unsigned int value); void handleProgramChange(unsigned int channel, unsigned int program); void handleAfterTouch(unsigned int channel, unsigned int velocity); void handlePitchChange(unsigned int pitch); void handleSongPosition(unsigned int position); void handleSongSelect(unsigned int song); void handleTuneRequest(void); void handleSync(void); void handleStart(void); void handleContinue(void); void handleStop(void); void handleActiveSense(void); void handleReset(void); */ }; //Pin connected to ST_CP of 74HC595 int latchPin = 8; //Pin connected to SH_CP of 74HC595 int clockPin = 12; ////Pin connected to DS of 74HC595 int dataPin = 11; int statusled = 13; int incomingByte = 0; // for incoming serial data MyMidi midi(Serial); void setup() { //set pins to output so you can control the shift register pinMode(latchPin, OUTPUT); pinMode(clockPin, OUTPUT); pinMode(dataPin, OUTPUT); pinMode(statusled, OUTPUT); digitalWrite(statusled,HIGH); // init 8254 control ports 2,3,4 pinMode(2, OUTPUT); // WR digitalWrite(2, HIGH); // disabled pinMode(3, OUTPUT); // A0 pinMode(4, OUTPUT); // A1 digitalWrite(3, LOW); digitalWrite(4, LOW); midi.begin(0); firstrun(); //settozero(); } void loop() { // if(Serial.available() > 0) // { // incomingByte = Serial.read(); // if (incomingByte == 49) { // 1 // firstrun(); // } // } midi.poll(); } void firstrun() { // control word sequence Serial.println("A0A1 -> 1"); digitalWrite(3, HIGH); digitalWrite(4, HIGH); Serial.println("2 low"); digitalWrite(2, LOW); digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, LSBFIRST, B01101100); digitalWrite(latchPin, HIGH); Serial.println("595 loaded"); Serial.println("2 high"); digitalWrite(2, HIGH); // end control word sequence // start data transfer, LSB MSB // 18181 for 400hz data_transfer( 5, 71); } void data_transfer(int LSB, int MSB) { Serial.println("A0A1 -> 0"); digitalWrite(3, LOW); digitalWrite(4, LOW); Serial.println("2 low"); digitalWrite(2, LOW); digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, MSBFIRST, LSB); digitalWrite(latchPin, HIGH); Serial.println("595 LSB"); Serial.println("2 high"); digitalWrite(2, HIGH); Serial.println("2 low"); digitalWrite(2, LOW); digitalWrite(latchPin, LOW); shiftOut(dataPin, clockPin, MSBFIRST, MSB); digitalWrite(latchPin, HIGH); Serial.println("595 MSB"); Serial.println("2 high"); digitalWrite(2, HIGH); }